

International Conference on Advances in Composite Materials and Structures (CACMS 2015) 13-15 April 2015, Istanbul

WELCOME TO CACMS2015

On behalf of members of the organizing committee, we would like to welcome you to International Conference on Advances in Composite Materials and Structures (CACMS 2015) in Istanbul.

CACMS2015 will be held in 13-15 April 2015 in Istanbul Technical University (İTÜ) which is world's third oldest technical university. Istanbul is one of the largest cities in the world and through its strategic location has always played a significant role in bridging east with the west. It is a vibrant cultural, business, economic and science and engineering center of Turkey. You will find many different cultures spread throughout Istanbul.

www.cacms2015.itu.edu.tr

İTÜ, Ayazaga Campus, SDKM Conference Center

Full paper submission (compulsory): July 31,2015 We hope that this three day meeting will further the collaborative activities internationally by serving as a scientific platform, which fosters scientific understanding and technical innovation in composite materials and technology through the information exchange among the worldwide community of engineers and scientists in the field.

This conference intends to bring forward the best research, studies and applications on composite materials and structures. The themes are:

- Structural Designs, Analysis & Applications
- Experimental Methods & Manufacturing Techniques
- Materials Mechanics
- Materials

ISTANBUL TECHNICAL UNIVERSITY

Istanbul Technical University (ITU) was established in 1773, during the time of the Ottoman Sultan Mustafa III. under its original name "Mühendishane-i Bahr-i Humayun". Since then ITU continued and developed its higher education in various forms.

In 1946, ITU became an autonomous university, including the Faculties of Civil Engineering, Architecture, Mechanical Engineering, and Electrical Engineering. ITU is a state university which defines and continues to update methods of engineering and architecture in Turkey.

Istanbul Technical University (In Turkish "İstanbul Teknik Üniversitesi", commonly referred to as ITU or Technical University) is an international technical university located in Istanbul, Turkey. It is the world's third oldest technical university dedicated to engineering sciences as well as social sciences recently, and is one of the most prominent educational institutions in Turkey. ITU is ranked 108th worldwide and 1st nationwide in the field of engineering/technology by THES – QS World University Rankings. Graduates of İstanbul Technical University have received many TUBITAK science and TUBA awards. Numerous graduates have also become members of the academy of sciences in the U.S.A., Britain and Russia. The university has 39 undergraduate, 144 graduate programs, 13 colleges, 346 labs and 12 research centers. Its student -to-faculty ratio is 12:1.23 engineering departments of ITU are accredited by ABET.

The vision of Istanbul Technical University is always in development as ITU is a world university.

The mission of Istanbul Technical University as a research university competing in the international arena without being constrained by the national boundaries, is to continue teaching, education and R&D activities as well as contributing to the international knowledge by reaching the advanced knowledge rather than only improving the quality of teaching and research activities.

ISTANBUL

Istanbul: A world center of great value in the past as well as in the present, Istanbul embraces Asia on the one hand and Europe on the other.

Istanbul, with its historical peninsula, numerous scenic and historical beauties is a magnificently unique city that has been capital to many civilizations from past to present and still continues to be home to residents from all over the world. This rooted city, with a history dating back to 300 thousand years before, constitutes a mosaic of many civilizations and cultures combined.

One may come across legacies and monuments of thousands of years behind any door or around any corner in Istanbul. Whether you take a round tour in Istanbul or visit any of the 39 districts nearby, you will catch hold of various historical and natural wonders any minute.

You may begin your Istanbul tour at the Grand Bazaar that will enchant you with its bright and pleasant environment while a sense of peace and security will wrap you tightly in Hagia Sophia. A tour of the pearl of the Bosporus, Ortaköy, Beşiktaş and Kabataş will let you enjoy the delightful views along the deep blue coast.

With the Black Sea in the north, the Marmara Sea in the south and the Istanbul Strait running in all its glory through the middle of the city, you will experience great moments in Istanbul and witness the unique combination of the Mediterranean and Black Sea climates. You may encounter a hot and humid weather in the summer and a cold and snowy weather in the winter. On the other hand, Pierre Loti, one of the most tranquil and charming corners in Istanbul, will invite you to drink some Turkish Tea and enjoy the view on site.

The setting sun illuminates the city like a painting every evening. The candle- like silhouettes of the mosques rise above the historical peninsula to greet the city while the sun and the moon salute each other as the day turns into night. Right at that moment you will feel like a sultan in the cradle of civilizations. If you prefer to be carried away by the beat of the night you may consider visiting Kalamış, Fenerbahçe, Moda and Caddebostan located on the Anatolian side. Likewise, the coast of the European side, such as Ortaköy, Kuruçeşme, Bebek, Tarabya and Suada offer popular entertainment venues with doors open to guests until early sunrise.

Bridging two continents, this unique city, where one can encounter people from different countries and witness diverse cultures merging in harmony, will awaken completely different feelings in you.

Organizing & Scientific Committee

Chair

Prof. Dr. Antonio J. M. Ferreira, University of Porto, Portugal

Co-Chairs

Assist. Prof. Dr. Hülya Cebeci, Istanbul Technical University, Turkey Assist. Prof. Dr. Elif Özden Yenigün, Istanbul Technical University, Turkey

Organizing Committee

Prof. Dr. İbrahim Özkol, Istanbul Technical University, Turkey Assist. Prof. Dr. Aytaç Arıkoğlu, Istanbul Technical University, Turkey Prof. Dr. Sezai Saraç, Istanbul Technical University, Turkey Prof. Dr. Fatma Kalaoğlu, Istanbul Technical University, Turkey Assoc. Prof. Dr. Mesut Şimşek, Yildiz Technical University, Turkey Prof. Dr. Metin Aydoğdu, Trakya University, Turkey

Scientific Committee

Hülya Cebeci, Istanbul Technical University, Turkey	Nurseli Uyanık, Istanbul Technical University,
Elif Özden Yenigün, Istanbul Technical University,	Turkey
Turkey	Özge Özdemir, Istanbul Technical University, Turkey
Aytaç Arıkoğlu, Istanbul Technical University,	Sezai Saraç, Istanbul Technical University, Turkey
Turkey	Vedat Ziya Doğan, Istanbul Technical University,
Demet Balkan, Istanbul Technical University, Turkey	Turkey
Fatma Kalaoğlu, Istanbul Technical University,	Zahit Mecitoğlu, Istanbul Technical University,
Turkey	Turkey
Halit Süleyman Türkmen, Istanbul Technical	Ahmet Çavdar, Gumushane University, Turkey
University, Turkey	Alberto Milazzo, University of Palermo, Italy
İbrahim Özkol, Istanbul Technical University, Turkey	Ana Amaro, University of Coimbra, Portugal
Lütfi Öveçoğlu, Istanbul Technical University, Turkey	Ana Neves, University of Porto, Portugal

Ashraf Zenkour, KAU, Saudi Arabia Carla Roque, INEGI, Portugal Carlos Santiuste, University Carlos III Madrid, Spain

Dai-Gil Lee, KAIST, Korea

Erasmo Carrera, Politecnico di Torino, Italy Erasmo Viola, University of Bologna, Italy Filipa Duarte, University of Lisbon, Portugal Francesco Tornabene, University of Bologna, Italy Geminiano Mancusi, University of Salerno, Italy İsmail Lazoğlu, Koc University, Turkey Ivo Cerny, SVUM, Czech Republic Jean-Francois Deu, CNAM, France João Reis, Universidade Federal Fluminense, Brazil Konstantinos Tserpes, University of Patras, Greece Lluis Torres, University of Girona, Spain Lorenzo Dozio, Politecnico di Milano, Italy Luciano Feo, University of Salerno, Italy M. Iqbal Khan, King Saud University, Saudia Arabia Maria Cinefra, Politecnico di Torino, Italy Melih Papila, Sabanci University, Turkey

Mesut Şimşek, Yildiz Technical University, Turkey Metin Aydoğdu, Trakya University, Turkey Nicolae Crainic, Politechnica de Timisoara, Romenia Nuno Silvestre, University of Lisbon, Portugal Nuri Ersoy, Bogazici University, Turkey Pascal Casari, University of Nantes, France Raul Campilho, ISEP, Portugal Roham Rafiee, University of Tehran, IRAN Tao Zeng, Harbin University of Science and Technology, China Volnei Tita, University of São Paulo, Brazil Walid Larbi, CNAM, France Joao Correia, University of Lisbon, Portugal Salvatore Russo, University of Venice, Italy Seung Hwan Chang, Chung-Ang University, Korea Surkay Akbarov, Yildiz Technical University, Turkey Yufeng Xing, Beihang University, China Nicholas Fantuzzi, University of Bologna, Italy Pedro Camanho, University of Porto, Portugal Faik Oktar, Marmara University, Turkey

Themes & Tracks

Structural Designs, Analysis & Applications

- Composite structures in civil engineering
- Composite structures in automotive applications
- Innovative Applications, multifunctional and smart composites
- Textile Structural Composites
- Bio-inspired design of composites
- Green Composites
- Fiber metal laminates and composites

Experimental Methods & Manufacturing Techniques

- Non-destructive Inspection Techniques for Composite Materials and Structures
- New Materials Testing Methods
- New Structural Testing Methods
- Structural Health Monitoring
- Manufacturing Technologies (Sandwich technologies, Low cost technologies etc.)
- Recycling of Composites and Sustainability

Materials Mechanics

- Multi-scale Modeling
- Numerical Modeling
- Micromechanics and Finite Element Models on Composite Structures
- Optimization techniques and methods
- Impact on Composites, Fatigue
- Dynamics of Composite Materials & Dynamic Fracture
- Delamination
- Failure & Damage

Materials

- Porous and cellular materials
- Interfaces and interphases
- Fiber Reinforcement & Fiber Architecture
- Self Healing Systems and Materials
- Nanocomposites
- Carbon and Graphene Related Composites
- Thermoplastic Matrix Materials & Composites
- Metal Matrix Composites, Ceramic Matrix Composites & Ceramic Materials Composites
- Hybrid Composites

Venue Map

Istanbul Technical University, SDKM (Süleyman Demirel Kültür Merkezi, Suleyman Demirel Culture Center) Maslak, ISTANBUL is the proposed venue for CACMS2015. SDKM is a large and modern conference center, which is situated in Ayazaga Campus, Maslak district just 15 minutes from the city centre, Taksim. ITU has its own metro station; this is the fastest way of transportation in Istanbul. SDKM is only a 50 meter walk from the ITU-Ayazaga Metro Station. The metro station is located at the entrance of the university.

Plenary Lecturers

13th of April, 2015

Time: 09:10-09:40

Prof. Dr. Lütfi Öveçoğlu

M. Lütfi Öveçoğlu is Professor in the department of Metallurgical and Materials Engineering at Istanbul Technical University. He received his M. S. and Ph. D. degrees in Materials Science and Engineering from Stanford University in Stanford, CA, U. S. A. in 1987. He worked at Xerox PARC for one year and as Technical Manager at Devtech B. V. in the Netherlands for two years following his Ph. D. He became faculty member in the department of Metallurgical and Materials Engineering of Istanbul Technical University in 1990 and has since been in this position.

He is the founder and technical director of a cluster of 9 laboratories named Particulate Materials Laboratories (PML). He was awarded the TÜBİTAK Encouragement Award (Teşvik Ödülü) in Engineering in 1997 and the Turkish Ceramic Federation Ceramic Honorary Award in 2010. He is author or co-author of 145 papers cited in Web of Science, 2 book chapters and 3 edited conference proceedings with about 949 citations to his work which mostly related to metal matrix composites (MMCs) and ceramic matrix composites (CMCs). PML group consists of 3 professors, 1 associated professor, 3 doctorate researchers, 15 PhD candidates and 16 graduate students.

Overview of research activities on the synthesis and characterization of particle reinforced Al and W-based composites

by Lütfi Öveçoğlu

Metal matrix composites (MMCs) reinforced with discontinuous phases in the forms of short fibers, whiskers, and particulates exhibit considerably enhanced strength values at room temperature or at higher temperatures, low coefficient of thermal expansion, good wear resistance and stiffness compared to the corresponding unreinforced alloys. Mechanical alloying (MA) is a solid-state powder processing technique involving repeated welding, fracturing, and rewelding of powder particles in a high-energy ball mill and it is used to produce composite metal powders, metastable crystalline and quasicrystalline phases and amorphous alloys with controlled submicron sized novel microstructures and/or nanostructures. In the last three decades, mechanical alloying has been shown to be capable of mechanochemically synthesizing a variety of equilibrium and nonequilibrium alloy phases starting from blended elemental or prealloyed powders. Aluminum-based metal matrix composite synthesized via mechanical alloying (MA) which have received considerable attraction as structural materials in aerospace, automotive and transportation industries due to their high specific modulus and strength, superior wear, fatigue and creep resistances. It is generally known that the Al composites containing hard particles exhibit high wear resistance depending on volume fraction, size and type of reinforcements compared to the matrix alloy. Tungsten (W) and its composite which are candidate materials for important structural applications at high temperatures due to their excellent properties such as high melting point, high elastic modulus, high thermal shock resistance, low thermal expansion coefficient, good corrosion resistance and good high temperature strength and stiffness. There are lots of our studies about tungsten composites reinforced various oxide and borides particles to enhance high temperature strength and creep resistance of tungsten and its alloys.

Plenary Lecturers

13th of April, 2015

Time: 13:30-14:00

Assoc. Prof. Dr. Demirkan Çöker

Dr. Coker is currently Associate Professor in Aerospace Engineering and Director of Structural Mechanics and Materials Laboratory at RÜZGEM, METU. He acted as a vice-Chair of the Dept. of Aerospace Engineering from 2009-2012. Dr. Coker holds a B.S. degree in Aeronautical Engineering from METU, an M.Sc. degree in Aerospace Engineering from University of Dayton, an M.Sc. degree in Applied Mathematics from Wright State University and a Ph.D degree in Aeronautics with a minor in Geophysics from California Institute of Technology (Caltech). After Dr. Coker obtained his B.S., he started his career as a research

engineer at the UDRI and at the Materials Lab/Wright Laboratories, Dayton,

carrying out research on thermomechanical fatigue of novel high temperature composite materials for the hypersonic National Aerospace Plane project. During his Ph. D. studies at Caltech he carried out groundbreaking experimental work on dynamic fracture of composite materials. Afterwards he worked as a Post-Doctoral research associate at Brown University on dynamic friction modeling (2001-2004) and worked as an Assistant Professor at Oklahoma State University (2004-2008). He also worked as a visiting Professor at KITP, the University of California at Santa Barbara and EPFL in Lausanne. Dr. Coker has published 24 peer reviewed articles and 23 conference proceedings, gave more than 50 international conference talks and more than 30 invited talks in the fields of fatigue, fracture mechanics, friction, dynamic failure, experimental mechanics, computational mechanics and composite materials. In addition, he has been instrumental in setting up the undergraduate aerospace labs at METU, structure and materials labs at RUZGEM and micro-and nano-mechanics laboratory at Oklahoma State University.

Dynamic failure of curved CFRP composite laminates under quasi-static loading

by Demirkan Coker

In aerospace and wind energy industries, new advances in composite manufacturing technology and high demand for lightweight structures are fostering the use of composite laminates in a wide variety of shapes as primary load carrying elements. However, once a moderately thick laminate takes highly curved shape, such as an L-shape, Interlaminar Normal Stresses (ILNS) are induced together with typical Interlaminar Shear Stresses (ILSS) on the interfaces between the laminas. The development of ILNS promotes mode-I type of delamination propagation in the curved part of the L-shaped structure, which is a problem that has recently raised to the forefront in in-service new composite wind turbines. Delamination propagation in L-shaped laminates can be highly dynamic even though the loading is quasi-static. An experimental study to investigate dynamic delamination under quasi-static loading is carried out using a million fps high-speed camera. Simulations of the experiments are conducted with a bilinear cohesive zone model implemented in user subroutine of the commercial FEA code ABAQUS/explicit. The experiments were conducted on a 12-layered woven L-shaped CFRP laminates subjected to shear loading perpendicular to the arm of the specimen with a free-sliding fixture to match the boundary conditions used in the FEA. A single delamination is found to initiate at the 5th interface during a single drop in the load. The delamination is then observed to propagate to the arms at intersonic speed of 2200m/s. The results obtained using cohesive zone models in the numerical simulations were found to be in good agreement with experimental results in terms of load displacement behavior and delamination history. These results are the first conclusive evidence of intersonic delamination in composite materials triggered under quasistatic loading.

Plenary Lecturers

14th of April, 2015

Time: 08:50-09:20

Assoc. Prof. Dr. Melih Papila

Melih Papila received his B.S. (1990) and M.S. (1995) degrees in Aeronautical Engineering from the Middle East Technical University, Ankara, Turkey. Dr. Papila participated in a training program and worked as an engineer in structural testing department of CASA, Madrid (1992). He then worked at Roketsan, Ankara (1993 - 1997) as an R&D engineer and assumed full responsibility in a multi-national and –institutional research and technology project on high performance structural composites. He started his PhD studies (1997) and received his degree in Aerospace Engineering from the University of Florida, Gainesville (2001), as

a member of Multidisciplinary and Structural Optimization group.

Dr. Papila is currently a faculty member as an Associate Professor in the Materials Science and Nanoengineering Program at Sabancı University (SU), Istanbul, Turkey. Prior to joining SU in 2004, he was a Postdoctoral Associate jointly in Interdisciplinary Microsystems and Multidisciplinary and Structural Optimization Groups at the Department of Aerospace and Mechanical Engineering of University of Florida (2002 – 2004). Dr. Papila is a recipient of EU FP7 Marie Curie International Outgoing Fellowship. He joined Composites Design Group as a visiting professor in Aeronautics & Astronautics Department at Stanford University (2010-2012).

Dr. Papila has developed expertise in design of experiments and surrogate modeling, manufacturing, testing, analysis and design of advanced composite materials and structures. His current research aims to integrate the nano-scale materials into applied macro world of multi-functional composite materials and structures.

Challenge of Nano in the Macro world of composites: Are we there yet?

by Melih Papila

Advanced composites have become indispensible resource in a variety of fields such as aerospace, automotive and energy as they enable lighter structures without sacrificing the safety. Their full potential is yet to be met calling engineers and scientists to push the boundaries of research and development on composites for making them even more competitive and promising. In other words, we are urged to "think outside the box" practices with advancing manufacturing and characterization techniques and software specialized on composites as opposed to traditional lay-ups, materials and production. This challenge we are in is arguably dominated by the multi-scale nature of the composites. With the era of nanomaterials and their integration into macro world of composites, importance of the understanding and ability to design and manipulate the mechanisms bridging the scales, are further pronounced. Therefore, research front incorporating a multi-scale framework is essential.

Figure 1: A multi-scale framework for engineering advanced composites.

A nano-enhanced/augmented structural composite/material concept has been studied within such a multi-scale engineering framework (Fig.1), and its review is presented herein. The concept is realized by integration of the nano-scale in the form of nanofibrous interlayers into the polymer matrix composites. The nanofiber mats as interleafs may find extensive use in nearly all traditional light-weight laminated and sandwich structural applications where advanced composites are necessary. They can be easily incorporated into existing manufacturing processes and provide substantially enhanced mechanical properties, while the weight and thickness increase associated with interleaving is nearly negligible. Additionally, the possibilities for composite nanofibers by combining with particles/fillers allow the toughening performance to be further enhanced. Their full potential is even higher with multifunctional capabilities, such as tuning of mechanical, thermal and electrical properties by the right choices of nanofiber and filler combinations and proportions. With a thorough understanding of impact on the properties by the nanofibrous interlayers, the opportunities are plentiful for developing characterization and scaled-up production capabilities and integration of the nanofibrous materials into conventional composite materials and engineering design frameworks.

A road map and a series of examples are presented for effective incorporation of the electrospun nanofiber interlayers/interleafs into the laminated composites. The research hypothesis is that issues

contributing to poor interlaminar strength and toughness can be delayed or eliminated by interleaving, in addition to suppressing matrix cracking, whether the root cause of delamination is isolated or synchronous. Toughening mechanisms in the presence of nanofiber interleafs are shown to be effective under both in-plane and out-of-plane loading. Specifically, epoxy-compatible poly (styrene-coglycdylmethacrylate), P(St-co-GMA) and P(St-co-GMA)/MWCNT nanofibrous interlayers incorporated into carbon/epoxy laminated composites are exemplified for enhancing mechanical behavior (Fig.2). Tests performed are longitudinal and transverse tension, open hole tension, three point bending, end notched flexural tests, Charpy Impact and Split-Hopkinson bar test. The working mechanism of these interlayers under in-plane loads is further elaborated by the custom design tensile tests of $(0_2/90_4)$ s interleaved laminates, backed-up by acoustic recording and analysis. Influence of the nanofibrous interleafs on the extended fatigue life of the laminates is also demonstrated.

Figure 2: Representation of modified prepregs by nanofibrous interleafs and an example of enhanced mechanical properties. **Acknowledgement:** TUBITAK Grant numbers 109M651, 213M542 and European Commission under the Marie Curie International Outgoing Fellowship Programme, Grant FP7-PEOPLE-2010-IOF-274737.

- Ozden, E., Menceloğlu, Y. Z., Papila, M. "Engineering Chemistry of Electrospun Nanofibers and Interfaces in Nanocomposites for Superior Mechanical Properties," Applied Materials&Interfaces, Vol.2 (7), pp.1788-93, July 2010.
- Yenigun-Ozden E., Menceloğlu, Y. Z., Papila, M., "MWCNTs/P(St-co-GMA) composite nanofibers of engineered interface chemistry for epoxy matrix nanocomposites," Applied Materials&Interfaces, Vol. 4 (2), pp.777-784, February 2012.
- Bilge, K., Yenigün-Özden, E., Şimşek, E., Menceloğlu, Y. Z., Papila, M., "Structural Composites Hybridized with Epoxy Compatible Polymer/MWCNT Nanofibrous Interlayers," Composites Science and Technology, Vol. 72 (4), pp.1639-1645, July 2012.
- Bilge, K., Venkataraman, S., Menceloğlu, Y. Z., Papila, M., "Global and Local Nanofibrous Interlayer Toughened Composites for Higher In-Plane Strength, "Composites Part A: Applied Science and Manufacturing, Vol. 58, pp.73-76, March 2014.
- Bilge, K., Papila, M., "Chapter 10: Interlayer toughening mechanisms of composite materials," in Toughening Mechanisms in Composite Materials, edited by Q. Qin, and J. Ye, Elsevier-Woodhead Publishing-Elsevier, in press, June 2015.

Scientific Program

In Short

The poster display area will be available for set-up on beginning Monday, April 13.

Poster session will be held on Tuesday, April 14, at 16:00-17:20.

Poster dimensions can be maximum 90 cm in width and 180 cm in height.

	13 APRIL 2015								
08:30-09:00	Opening/Registration								
09:00-09:10		Opening (Ceremony						
09:10-09:40		Plenary L	.ecture-1						
09:50-10:50		SESSI	ON-1						
	THEME-1 (Room-1)	THEME-2 (Room-2)	THEME-3 (Room-3)	Theme-4 (Room-4)					
09:50-10:10	Th1.1.1.2	Th2.1.1.2	Th3.1.1.2	Th4.1.1.2					
10:10-10:30	Th1.1.1.3	Th2.1.1.3	Th3.1.1.3	Th4.1.1.3					
10:30-10:50	Th1.1.1.4 Th2.1.1.4 Th3.1.1.4 Th4.1.1.4								
10:50-11:10	COFFEE BREAK								
11:10-12:30		SESSI	ON-2						
	THEME-1 (Room-1)	THEME-2 (Room-2)	THEME-3 (Room-3)	Theme-4 (Room-4)					
11:10-11:30	Th1.1.2.1	Th2.1.2.1	Th3.1.2.1	Th4.1.2.1					
11:30-11:50	Th1.1.2.2	Th2.1.2.2	Th3.1.2.2	Th4.1.2.2					
11:50-12:10	Th1.1.2.3	Th2.1.2.3	Th3.1.2.3	Th4.1.2.3					
12:10-12:30	Th1.1.2.4	Th2.1.2.4	Th3.1.2.4	Th4.1.2.4					

12:30-13:30	LUNCH BUFFET								
13:30-14:00	Plenary Lecture-2								
14:00-15:20		SESSI	ON-3						
	THEME-1 (Room-1)	THEME-2 (Room-2)	THEME-3 (Room-3)	Theme-4 (Room-4)					
14:00-14:20	Th1.1.3.1	Th2.1.3.1	Th3.1.3.1	Th4.1.3.1					
14:20-14:40	Th1.1.3.2	Th2.1.3.2	Th3.1.3.2	Th4.1.3.2					
14:40-15:00	Th1.1.3.3	Th2.1.3.3	Th3.1.3.3	Th4.1.3.3					
15:00-15:20	Th1.1.3.4	Th2.1.3.4	Th3.1.3.4	Th4.1.3.4					
15:20-15:40	COFFEE BREAK								
15:40-17:00		SESSI	ON-4						
	THEME-1 (Room-1)	THEME-2 (Room-2)	THEME-3 (Room-3)	Theme-4 (Room-4)					
15:40-16:00	Th1.1.4.1	Th2.1.4.1	Th3.1.4.1	Th4.1.4.1					
16:00-16:20	Th1.1.4.2	Th2.1.4.2	Th3.1.4.2	Th4.1.4.2					
16:20-16:40	Th1.1.4.3	Th2.1.4.3	Th3.1.4.3	Th4.1.4.3					
16:40-17:00		Th2.1.4.4	Th3.1.4.4						

	14 APRIL 2015							
08:30-08:50		Opening/Registration						
08:50-09:20		Plenary L	.ecture-3					
09:30-10:50		SESSI	ON-1					
	THEME-1 (Room-1)	THEME-2 (Room-2)	THEME-3 (Room-3)	Theme-4 (Room-4)				
09:30-09:50	Th1.2.1.1	Th2.2.1.1	Th3.2.1.1	Th4.2.1.1				
09:50-10:10	Th1.2.1.2	Th2.2.1.2	Th3.2.1.2	Th4.2.1.2				
10:10-10:30	Th1.2.1.3	Th2.2.1.3	Th3.2.1.3	Th4.2.1.3				
10:30-10:50	Th1.2.1.4		Th3.2.1.4	Th4.2.1.4				
10:50-11:10		COFFEE	BREAK					
11:10-12:30		SESSI	ON-2					
	THEME-1 (Room-1)	THEME-2 (Room-2)	THEME-3 (Room-3)	Theme-4 (Room-4)				
11:10-11:30	Th1.2.2.1	Th2.2.2.1	Th3.2.2.1	Th4.2.2.1				
11:30-11:50	Th1.2.2.2	Th2.2.2.2	Th3.2.2.2	Th4.2.2.2				
11:50-12:10	Th1.2.2.3	Th2.2.2.3	Th3.2.2.3	Th4.2.2.3				
12:10-12:30	Th1.2.2.4	Th2.2.2.4	Th3.2.2.4	Th4.2.2.4				
12:30-14:00		LUNCH	BUFFET					
14:00-15:20		SESSI	ON-3					
	Theme-4 (Room-1)	THEME-2 (Room-2)	THEME-3 (Room-3)	Theme-4 (Room-4)	General Session (Room-5)			
14:00-14:20	Th4.2.3.1	Th2.2.3.1	Th3.2.3.1	Th4.2.3.5	Th5.2.3.1			
14:20-14:40	Th4.2.3.2	Th2.2.3.2	Th3.2.3.2	Th4.2.3.6	Th5.2.3.2			
14:40-15:00	Th4.2.3.3	Th2.2.3.3	Th3.2.3.3	Th4.2.3.7	Th5.2.3.3			
15:00-15:20	Th4.2.3.4	Th2.2.3.4	Th3.2.3.4	Th4.2.3.8				
15:20-15:40		COFFEE	BREAK					

15:40-17:20					
	THEME-1 (Room-1)	THEME-2 (Room-2)	THEME-3 (Room-3)	Theme-4 (Room-4)	Theme-4 (Room-5)
15:40-16:00	Th1.2.4.1	Th2.2.4.1	Th3.2.4.1	Th4.2.4.1	Th4.2.4.5
16:00-16:20	Th1.2.4.2	Th2.2.4.2	Th3.2.4.2	Th4.2.4.2	Th4.2.4.6
16:20-16:40	Th1.2.4.3	Th2.2.4.3	Th3.2.4.3	Th4.2.4.3	Th4.2.4.7
16:40-17:00	Th1.2.4.4	Th2.2.4.4			Th4.2.4.8
17:00-17:20	Th1.2.4.5				

	15 APRIL 2015								
09:00-10:20	SESSION-1								
	THEME-1 (Room-1)	THEME-2 (Room-2)	THEME-3 (Room-3)	Theme-4 (Room-4)					
09:00-09:20	Th1.3.1.1	Th2.3.1.1	Th3.3.1.1	Th4.3.1.1					
09:20-09:40	Th1.3.1.2	Th2.3.1.2	Th3.3.1.2	Th4.3.1.2					
09:40-10:00	Th1.3.1.3	Th2.3.1.3	Th3.3.1.3	Th4.3.1.3					
10:00-10:20	Th1.3.1.4	Th2.3.1.4	Th3.3.1.4	Th4.3.1.4					
10:20-10:40	COFFEE BREAK								
10:40-12:00	SESSION-2								
	THEME-1 (Room-1)	THEME-2 (Room-2)	THEME-3 (Room-3)	Theme-4 (Room-4)					
10:40-11:00	Th1.3.2.1	Th2.3.2.1	Th3.3.2.1	Th4.3.2.1					
11:00-11:20	Th1.3.2.2	Th2.3.2.2	Th3.3.2.2	Th4.3.2.2					
11:20-11:40	Th1.3.2.3	Th2.3.2.3	Th3.3.2.3	Th4.3.2.3					
11:40-12:00	Th1.3.2.4	Th2.3.2.4	Th3.3.2.4	Th4.3.2.4					
12:00-13:30	LUNCH BUFFET								

13:30-14:50	SESSION-3							
	THEME-1 (Room-1)	THEME-2 (Room-2)	THEME-3 (Room-3)	Theme-4 (Room-4)				
13:30-13:50	Th1.3.3.1	Th2.3.3.1	Th3.3.3.1	Th4.3.3.1				
13:50-14:10	Th1.3.3.2	Th2.3.3.2	Th3.3.3.2	Th4.3.3.2				
14:10-14:30	Th1.3.3.3	Th2.3.3.3	Th3.3.3.3	Th4.3.3.3				
14:30-14:50	Th1.3.3.4	Th2.3.3.4	Th3.3.3.4	Th4.3.3.4				
14:50-15:10	COFFEE BREAK							
15:10-16:50		SESSI	ON-4					
	THEME-1 (Room-1)	THEME-2 (Room-2)	Theme-4 (Room-3)	Theme-4 (Room-4)				
15:10-15:30	Th1.3.4.1	Th2.3.4.1	Th4.3.4.1	Th4.3.4.5				
15:30-15:50	Th1.3.4.2	Th2.3.4.2	Th4.3.4.2	Th4.3.4.6				
15:50-16:10	Th1.3.4.3	Th2.3.4.3	Th4.3.4.3	Th4.3.4.7				
16:10-16:30	Th1.3.4.4	Th2.3.4.4	Th4.3.4.4	Th4.3.4.8				
16:30-16:50		Th2.3.4.5						

Full Program

13 April 2015								
08:30-09:00	Opening/Registration							
09:00-09:10	Opening Ceremony							
09:10-09:40	Plenary Lecture-1		Ovecoglu	Lutfi				
	Session-1							
Room-1	Theme-1:	Structural	Designs, Analysi	s & Applications				
	Presentation Code	Paper ID	Surname	Name	Title			
09.50 10.10	Th1 1 1 1	6062	Mara		A design approach for the development of connections between FRP			
09.50-10.10	1111.1.1.1	0903		bridge decks				
10.10-10.30	Th1 1 1 2	8205	Cherouat	Abel	Geometrical and FE approaches with remeshing procedure for			
10.10-10.30	1111.1.1.2	8205	Cherodat	Abei	composites woven fabric forming			
10.30-10.20	Th1 1 1 3	6908	Avad	Rezak	Numerical homogeneisation using a projected fiber technique for the			
10.50-10.50	111111.1.5	0,00	Aydu	NC20K	analysis of mechanical properties of short fiber reinforced composites			
Room-2	Theme-2:	Experimer	ntal Methods and	d manufacturing tee	chniques			
	Presentation Code	Paper ID	Surname	Name	Title			
09.50-10.10	Th2 1 1 1	7132	laeschke	Datar	Joining of thermoplastic composites using adapted laser transmission			
09.30-10.10	1112.1.1.1	/132	Jaescine	reter	welding techniques for aircraft applications			
10.10-10.30		li-hun	Characterization of a PVDF based sensor for health monitoring of					
10.10-10.50	1112.1.1.2	/233	Dae	51-11011	composite structures			
10:30-10:50	Th2.1.1.3	8513	Jin-Ho	Roh	Origami-inspired self-deployable shape memory composite structures			

Room-3	Theme-3:	Materials I	mechanics		
	Presentation Code	Paper ID	Surname	Name	Title
09:50-10:10	Th3.1.1.1	7463	Aydogdu	Metin	Forced vibration of Nanorods using nonlocal elasticity
10:10-10:30	Th3.1.1.2	7180	Böhlke	Thomas	Homogenization of the thermo-mechanical behavior of short-fiber
10-20 10-50	Th2 4 4 2	7015	Dues	Christenka	reinforced composites
10:30-10:50	1n3.1.1.3	7015	Droz	Christophe	High-order wave propagation in multi-directional composite laminates
Room-4	Theme-4:	Materials			
	Presentation Code	Paper ID	Surname	Name	Title
00.50 10.10	Th.4.1.1.1	9946	Doimor	Viltor	Progress in the development of self-optimising braiding process of
09:50-10:10	104.1.1.1	8840	Keimer	VIKLOF	technical textile structures
10.10 10.20	Th4 1 1 2	7124	Crainic	N	Polymeric nanocomposites based on magnetorheological fluids, a new
10:10-10:30	104.1.1.2	/134	34 Crainic N.	IN.	class of nanostructured materials
10.20 10.50	Th4 1 1 2	0010	0:1	K ara a	Improved core-skin adhesion through electrospun nanofibers for
10.50-10.50	1114.1.1.5	0910	Dilge	Nddii	honeycomb structures
10:50-11:10	COFFEE BRE	AK			
	Session-2				
Room-1	Theme-1:	Structural	Designs, Analysi	s & Applications	
	Presentation Code	Paper ID	Surname	Name	Title
11.10 11.20	Th1 1 3 1	0777	Chinasi	Claudia	Mitc9 shell elements based on reissner mixed variational theorem for
11:10-11:30	111.1.2.1	8323	Chinosi	Claudia	the analysis of anisotropic materials
11:30-11:50	Th1.1.2.2	8541	Choe	Kang Yeong	Design of the composite journal bearing for turbine/generator application
11.50 12.10	Th1 1 2 2	007E	Kumar	Descal	Numerical evaluation of stiffness degradation in cross-ply
11.30-12.10	1111.1.2.3	00/3	NUIIIdi	ресрак	laminates due to matrix cracking and fiber splitting
12:10-12:30	Th1.1.2.4	7277	Wael	Ibrahim	Effect of anchors on the RC slabs strengthened in flexure with FRP strips

Room-2	Theme-2:	Experimental Methods and manufacturing techniques			
	Presentation Code	Paper ID	Surname	Name	Title
11.10 11.20 The 1.2.1	Th2 1 2 1	7257	Chien-Ching Ma	N.4-	Full-field measurement of carbon fiber composite under tensile
11.10-11.50	1112.1.2.1	1251		IVId	test using digital image correlation
11.20 11.50	Th2 1 2 2	7701	lung	Kyung Chao	Health monitoring of a repaired runway using compliant
11.50-11.50	1112.1.2.2	1204	Jung Kyun	Kyung-Chae	polymer concretes under thermomechanical loading condition
11.50 12.10	Th3 1 3 3	7209	Lin	ст	White light shearing interferometer and its application to
11.50-12.10	1112.1.2.3	/500	LIN	3. 1.	examine residual stress of deposited thin films
12.10 12.20		Devid	Fire behaviour of thermally insulated RC beams strengthened		
12:10-12:30 Ih2.1.2.4	102.1.2.4	8294	iviartins	David	with EBR-CFRP strips: experimental study

Room-3	Theme-3:	Materials r	mechanics		
	Presentation Code	Paper ID	Surname	Name	Title
11.10 11.20 T	Th2 1 2 1	7204	China ada	NA	Parameter-free shape optimization of orthotropic shell
11.10-11.50	1113.1.2.1	7304	Shinoua	Widsatusiii	structure
14-20-11-50 Th2-1-2-2	Th2 1 2 2	7216	Codowaki	Tamaaa	Modelling of damage process in two-phase ceramic composite
11.50-11.50	1113.1.2.2	/310	Sauowski	10111852	materials under mechanical loading
11.50 12.10	Th2 1 2 2	7272	Volum		Modeling of mode I delamination growth in composites by
11:50-12:10	1115.1.2.5	/3/3	rolum	Ogui	using peridynamics implemented in Abaqus
12:10-12:30 Th3.1.2.4	TL2 1 2 4	7400	Höwer	Daniel	Comparison of numerical results of a 3-D model accounting for
	1113.1.2.4	7409			mode I and II delamination with experiments

Room-4	Theme-4:	Materials			
	Presentation Code	Paper ID	Surname	Name	Title
11:10-11:30	Th4.1.2.1	7276	Coenen	LW.	The powder metallurgical route to tungsten-fiber reinforced
		/ _ / 0			tungsten
11:30-11:50	Th4.1.2.2	7103	Ukrainets	Maksym	High-temperature oxidation of composite material of the NiAl-
				·	TiB2 system
11:50-12:10	Th4.1.2.3	7374	Budiman	Bentang Arief	A continuum model of interface to investigate stress transfer
					on fiber-matrix composite
12:10-12:30	Th4.1.2.4	8878	Cetin	Mesut	High precise cutting of carbon- and glass fiber using laser
					technology
12:30-13:30	LUNCH BUFF	٠£١			
13:30-14:00	Plenary Lecture-2		Coker	Demirkan	Dynamic failure of curved CFRP composite laminates
	-				under quasi-static loading
	Session-3				
Room-1	Theme-1:	Structural	Designs, Analysi	s & Applications	
	Presentation Code	Paper ID	Surname	Name	Title
14.00-14.20	Th1 1 3 1	8877	Karen	Idris	Developing blast resistive foam filled sandwich panels by using
14.00 14.20	1111111111	0077	Karen		evolutionary optimizationalgorithms
14:20-14:40	Th1.1.3.2	8778	Kim	I.H.	Finite element analysis of composite structures with corner
00		0110			radius
14:40-15:00	:00 Th1.1.3.3 7342 Sevhan Murat	Murat	Design and analysis of composite repairs in helicopter		
			,		horizontal stabilizers
15:00-15:20	Th1.1.3.4	9290	Almassri	Belal	A FEM-based model to study the behaviour of corroded RC
13.00-13.20 III1.1.3.4 J230 Alliassii Delal	beams shear repaired by NSM CFRP rods technique				

Room-2	Theme-2:	Experimen	tal Methods and	I manufacturing te	chniques
	Presentation Code	Paper ID	Surname	Name	Title
14.00 14.20	TL3 1 3 1	7256	Takabashi	Kaauka	Instant sintering of silver nano-ink on CFRP laminate for
14:00-14:20	1112.1.3.1	1250	Takanasm	KUSUKE	structural health monitoring
					Stochastic effect of grain-elongation on nanocrystalline
14:20-14:40	Th2.1.3.2	8285	Sob	Р.В.	materials strain and strain rate produced by accumulative
					roll-bonding and equal channel angular pressing
14.40 15.00	Th3 1 3 3	9207	Tongon	TD	Stochastic characters of nanostructures in nanomaterials
14:40-15:00	1112.1.3.3	0297	rengen	IB	contribute to nanomaterials mechanical property controversies
				Tatiana Yu	FeGa particles concentration influence on the
15:00-15:20	Th2.1.3.4	8561	Kiseleva		magnetomechanical anisotropy of polyurethane based
					nanocomposites

Room-3	Theme-3:	Materials mechanics				
	Presentation Code	Paper ID	Surname	Name	Title	
14:00-14:20 Th3.1.3.1	Th2 1 2 1	9221	Takin Atacan	Aufor	An isogeometric collocation approach for laminated plates	
	0221	Tekin Alacan	Aylei	using higher-order shear deformation theory		
14.20 14.40 Th	Th2 1 2 2	9926	Yoo	Jae-Seung	Investigation on strength recovery of scarf patch repaired	
14.20-14.40	1113.1.3.2	8830			composite laminates	
14.40 15.00	Th2 1 2 2	0000	Truong		Failure load prediction of scarf patched composite single- lap	
14:40-15:00 113.1.3.3	1115.1.5.5	0030	Truong	HUdi V.	joints by FEM	
15:00-15:20	Th2 1 2 /	7201	Dan	Daniel	FRP composite materials - an alternative solution for	
	113.1.3.4	1291			retrofitting of shear walls affected by cut-out openings	

Room-4	Theme-4:	Materials			
	Presentation Code	Paper ID	Surname	Name	Title
14.00-14.20	Th/ 1 2 1	7705	Pois	Paulo N.B.	Composites manufactured with green epoxy resin and tungsten
14.00-14.20	1114.1.3.1	//05	Neis		mine wastes
14-20-44-40 Th 4-4-2-2	Th4 1 2 2	0011	Ozden-	Elif	High strain rate deformation of nano-enhanced structural
14.20-14.40	1114.1.3.2	0014	Yenigun	EIII	composites
14.40 15.00	Th/ 1 2 2	7012	Magdalona	Szutkowska	Diamond composites with ternary carbides bonding phase from
14.40-15.00	1114.1.3.5	/012	wagualena	SZULKOWSKA	Ti-Ge-C system
15.00 15.20	Th4 1 2 2	7004	Huang		Amorphous/nanocrystalline ZrCu/Cu and ZrCu/Zr multilayered
15:00-15:20	1114.1.2.5	7004	nuang	J. C.	thin film composites with graded interfaces
15:20-15:40	COFFEE BREA	AK			

	Session-4						
Room-1	Theme-1:	Structural	tructural Designs, Analysis & Applications				
	Presentation Code	Paper ID	Surname	Name	Title		
15.40 16.00	Th1 1 4 1	7242	Tonac	Omor T	Low-velocity impact damage on laminated composites:		
15.40-10.00	1111.1.4.1	/245	ropac	Omer I.	simulations and correlations with tests		
16.00 16.20	Th1 1 4 2	7562	Carmona	Manual	Gypsum composites for improving passive energy storage in		
10.00-10.20	1111.1.4.2	7302	Carmona	Manuel	buildings		
16:20-16:40	Th1 1 4 2	8849	Yoo	Seong-Yoon	The structural analysis and strength evaluation of the rivet		
	111.1.4.3				nut joint for composite repair		

Room-2	Theme-2:	Experimen	Experimental Methods and manufacturing Techniques				
	Presentation Code	Paper ID	Surname	Name	Title		
15:40-16:00	Th2.1.4.1	8393	Chen	Terry Yuan-Fang	Experimental evaluation of aged CFRP panels with defects		
16.00 16.20	Th2 1 4 2	9637	Tahir	Daridah Md	Volumetric composition and shear strength evaluation of		
10:00-10:20	1112.1.4.2	8057	Tanır	Pariuan Mu.	pultruded hybrid kenaf/glass fiber composites		
16:20-16:40	Th2.1.4.3	8422	Ferreira	J.A.M.	Mechanical performance of jute fiber reinforced composites		
16.40-17.00	Th2 1 / /	8790	Tüzün	E Nibal	Investigation of the effect of rheology control agent,		
10.40-17.00	1112.1.4.4	8780	Tuzun	Fillidi	temperature and time on the viscosity of epoxy-based adhesives		
Room-3	Theme-3:	Materials I	mechanics				
	Presentation Code	Paper ID	Surname	Name	Title		
15.40 16.00	Th2 4 4 4	CO40		Moayyad M	The use of splicing swimmer bars as shear reinforcement in		
15:40-16:00	15:40-16:00 In3.1.4.1 6940	6940	Al-Nasra		reinforced concrete beams		
16.00 16.20	Th2 1 4 2	7012	Neuroi		Failure analysis and numerical investigation on the induced		
10:00-10:20	1115.1.4.2	7015	Nourai	wonannieu	damage when machining CFRP composites		
16:20-16:40	Th3.1.4.3	8874	Atescan	Yagmur	A multiscale approach for investigation of CNT waviness effect on PNCs		
16.40-17.00		9643	Khahashasku	Malaws NI	Carbon nanotube-nanodiamond hierarchical nanostructures		
10.40-17.00	1113.1.4.4	8042	Kildbashesku	valety N.	and their polyurea nanocomposites		
Room-4	Theme-4:	Materials					
	Presentation Code	Paper ID	Surname	Name	Title		
15.40 16.00	Th4 1 4 1	7097	Heich		Tension behavior of sputtered and evaporated thin film		
15.40-10.00	1114.1.4.1	/08/	пыен	С. п.	composites with Zn/ZrCu on flexible polyimide substrate		
16.00-16.30	Th4 1 4 2	7090	Klimczyk	Piotr	Microstructure and mechanical properties of alumina based		
10.00-10.20	1114.1.4.2	7089	КШПСZУК	Piotr	composites containing cubic boron nitride hard particles		
16.20-16.40	Th/ 1 / 2	8651	Abdan	Khalina	Mechanical strength performance of hybrid kenaf/coir		
16:20-16:40	Th4.1.4.3	8651	Abdan	NIIdiiiid	unsaturated polyester composite		

14 April 2015					
08:30-08:50	Opening/Registration	on			
08:50-09:20	Plenary Lecture-3		Papila	Melih	
	Session-1				
Room-1	Theme-1:	Structural I	Designs, Analys	is & Applications	
	Presentation Code	Paper ID	Surname	Name	Title
09.30-09.20	Th1 2 1 1	7167	Canozucca	Roberto	Effects of damages of NSM CFRP rectangular rods on
09.30-09.30	1111.2.1.1	/10/	Capozacca	Koberto	strengthened RC beams
09.50-10.10	Th1 2 1 2	7137	Wang	Hongtao	Plateau lower-bounds to the imperfection sensitive buckling
09.30-10.10	1111.2.1.2	/15/	wang	nongtao	of composite shells
10.10-10.30	Th1 2 1 3	6951		Mine	Buckling behaviours of functionally graded polymeric thin-
10.10-10.50	1111.2.1.3	0551	Osid Oysai	Winte	walled hemispherical shells
10.30-10.20	Th1 2 1 /	7/09	Özor	Mahmat S	Evaluation and validation of modal strain energy and complex
10.50-10.50	1111.2.1.4	7400	UZEI	Wennet 5.	eigenvalue methods for modelling damped composite structures
Room-2	Theme-2:	Experimen	tal Methods an	d manufacturing te	chniques
	Presentation Code	Paper ID	Surname	Name	Title
00.30-00.20	Th2 2 1 1	7727	Цен	Vung Chum	The comparison of inspection of CFRP material defect with electronic
09.30-09.30	1112.2.1.1	1232	пзи	rung Chum	speckle pattern interferometry, shearograohy, and thermography
00.50 10.10	Th2 2 1 2	0776	Khan	Sobail M A	Investigation of cracked aluminum panel repaired with
09.30-10.10	1112.2.1.2	9270	NIGII	Soliali Wi. A.	composite patch: An experimental study on effect of patch length
10.10 10.20	Th2 2 1 2	7111	Lin	цν	Characterization of local laser bonding quartz to anodic aluminum
10.10-10.50	1112.2.1.5	/111	LIII	п. к.	oxide
10.20-10.50	Th2 2 1 /	027/	Bouiadira	Bachir B	Comparison of fatigue crack growth behavior of Al 2024-T3
10.20-10:20	1112.2.1.4	52/4	boulaujia	Daliii D.	and AI-7075-T6 repaired with composite patch

Room-3	Theme-3:	Materials n	nechanics		
	Presentation Code	Paper ID	Surname	Name	Title
00.20 00.50	Th2 2 1 1	7401	García-	D	Numerical and experimental behavior of PEEK composite
09:30-09:50	1113.2.1.1	7401	González	D.	materials under low impact energy
00.50 10.10	Th2 2 1 2	7570	Cul	L Ifulz	Static and dynamic analysis of beam with uncertain material
09.50-10.10	1115.2.1.2	/5/0	Gui	Oluk	properties
10:10-10:30	Th3.2.1.3	6947	Chao	Ching-Kong	Crack problems in heterogeneous media
					Multi-objective optimal design of hybrid viscoelastic/
10.20 10.50	Th2 2 1 4		Arukočlu	Avtoc	composite sandwich beams by using generalized differential
10:30-10:30	1115.2.1.4		Alikogiu	Aylaç	quadrature method (GDQM) and non-dominated sorting
					genetic algorithm II (NSGAII)
Room-4	Theme-4:	Materials			
	Presentation Code	Paper ID	Surname	Name	Title
00.20 00.50	Th4 2 1 1	9550	Stofanou	Goorgo	The influence of inclusion shape on the effective properties
09.30-09.30	1114.2.1.1	8333	Steranou	George	of random nanocomposites
00.50 10.10	Th4 2 1 2	7152	Cho	Maanghya	Characterization of the mechanical properties of the polymer
09.50-10.10	1114.2.1.2	/152	CIIU	waengnyo	nanocomposites and their associated interphases
					Enhanced plasticity of MgZnCa based bulk metallic glass
10:10-10:30	Th4.2.1.3	6962	Wong	Pei-Chun	composites
					The influence of the graphene additive on mechanical
10:30-10:50	Th4.2.1.4	6995	Jaworska	Lucyna	properties and coefficient of friction of Al2O3 composites for
					cutting tools application
10:50-11:10	COFFEE BR	EAK			

	Session-2					
Room-1	Theme-1:	Structural	Designs, Analys	sis & Applications		
	Presentation Code	Paper ID	Surname	Name	Title	
11:10-11:30	Th1.2.2.1	7459	Aksencer	Tolga	Free vibration of rotating composite beams	
11.20 11.50	Th1 3 3 3	7017	Zhou	V D	A comparative study of rivet hole shapes for the mechanical	
11:30-11:30	1111.2.2.2	/21/	Zhou	T.D.	connections of composite panels	
11.50 12.10	Th1 3 3 3	7100	Alton	Mibrigiil E	Improving polymer/metal macro composite structure for	
11.50-12.10	1111.2.2.5	/190	Allan	winnigui E.	vibration damping	
					Vibroacoustics fatigue material parameters characterization	
12:10-12:30	Th1.2.2.4	9179	Lecheb	Samir	of the composite materials with different short vegetal fiber	
					reinforcement under low-velocity impacts	
Room-2	Theme-2:	Experimen	tal Methods ar	nd manufacturing te	chniques	
Room-2	Theme-2: Presentation Code	Experimen Paper ID	tal Methods ar Surname	nd manufacturing te Name	rchniques Title	
Room-2	Theme-2: Presentation Code	Experimen Paper ID	tal Methods ar Surname Batibay	nd manufacturing te Name Abmet P	rchniques Title Investigation of alumina – transition metals in binary systems	
Room-2	Theme-2: Presentation Code Th2.2.2.1	Experimen Paper ID 8687	tal Methods ar Surname Batıbay	nd manufacturing te Name Ahmet B.	chniques Title Investigation of alumina – transition metals in binary systems as armor material	
Room-2 11:10-11:30	Theme-2: Presentation Code Th2.2.2.1	Experimen Paper ID 8687	tal Methods ar Surname Batıbay	nd manufacturing te Name Ahmet B. Mare	rchniques Title Investigation of alumina – transition metals in binary systems as armor material Simple processing of aluminium alloys nanocomposites	
Room-2 11:10-11:30 11:30-11:50	Theme-2: Presentation Code Th2.2.2.1 Th2.2.2.2	Experimen Paper ID 8687 7019	tal Methods ar Surname Batıbay Leparoux	nd manufacturing te Name Ahmet B. Marc	rchniques Title Investigation of alumina – transition metals in binary systems as armor material Simple processing of aluminium alloys nanocomposites showing outstanding mechanical performances	
Room-2 11:10-11:30 11:30-11:50	Theme-2: Presentation Code Th2.2.2.1 Th2.2.2.2	Experimen Paper ID 8687 7019	tal Methods ar Surname Batıbay Leparoux	nd manufacturing te Name Ahmet B. Marc	ritle Title Investigation of alumina – transition metals in binary systems as armor material Simple processing of aluminium alloys nanocomposites showing outstanding mechanical performances Fabrication of diamond particles dispersed Zr-alloyed Cu	
Room-2 11:10-11:30 11:30-11:50 11:50-12:10	Theme-2: Presentation Code Th2.2.2.1 Th2.2.2.2 Th2.2.2.3	Experimen Paper ID 8687 7019 9007	tal Methods ar Surname Batıbay Leparoux Li	nd manufacturing te Name Ahmet B. Marc Jianwei	Title Investigation of alumina – transition metals in binary systems as armor material Simple processing of aluminium alloys nanocomposites showing outstanding mechanical performances Fabrication of diamond particles dispersed Zr-alloyed Cu matrix composites and their thermal conductivity	
Room-2 11:10-11:30 11:30-11:50 11:50-12:10	Theme-2: Presentation Code Th2.2.2.1 Th2.2.2.2 Th2.2.2.3	Experimen Paper ID 8687 7019 9007	tal Methods ar Surname Batıbay Leparoux Li	nd manufacturing te Name Ahmet B. Marc Jianwei	Title Investigation of alumina – transition metals in binary systems as armor material Simple processing of aluminium alloys nanocomposites showing outstanding mechanical performances Fabrication of diamond particles dispersed Zr-alloyed Cu matrix composites and their thermal conductivity Nondestructive evaluation technique of hidden delamination	
Room-2 11:10-11:30 11:30-11:50 11:50-12:10 12:10-12:30	Theme-2: Presentation Code Th2.2.2.1 Th2.2.2.2 Th2.2.2.2 Th2.2.2.3	Experimen Paper ID 8687 7019 9007 7222	tal Methods ar Surname Batıbay Leparoux Li	nd manufacturing te Name Ahmet B. Marc Jianwei Do-Hyoung	Title Investigation of alumina – transition metals in binary systems as armor material Simple processing of aluminium alloys nanocomposites showing outstanding mechanical performances Fabrication of diamond particles dispersed Zr-alloyed Cu matrix composites and their thermal conductivity Nondestructive evaluation technique of hidden delamination in glass fiber reinforced composites using terahertz	

Room-3	Theme-3:	Materials m	echanics		
	Presentation Code	Paper ID	Surname	Name	Title
11.10 11.20	Th2 2 2 1	7270	Suda	Mitsupori	Analysis of mechanical property on correlation between
11.10-11.50	1113.2.2.1	7270	Suud	WITSUIDT	paperboard and paper tube
11.30-11.20	Th2 2 2 2	7/18	Do Bollis		An enhanced multi-scale technique for the study of reinforced
11.30-11.50	1113.2.2.2	/410	De Dellis	IVI.L.	composites with damage
11.50-12.10	Th3 2 2 3	7525		Roger	A simple and reliable method for the strength prediction of
11.50-12.10	1113.2.2.3	/ 525	VIAL	Noger	the CFRP UD pieces
12.10-12.30	Th2 2 2 1	7462	Arda	Mustafa	Torsinal wave propagation in multiwalled carbon nanotubes
12.10-12.50	1113.2.2.4	7402	Alua	Wustala	using nonlocal elasticity
Room-4	Theme-4:	Materials			
	Presentation Code	Paper ID	Surname	Name	Title
11.10-11.30	Th/I 2 2 1	711/	Thakur	Shaila	Microwave absorption and thermal conductivity enhancement
11.10-11.50	1117.2.2.1	/114	maku	Shaha	of Epoxy TiO2 nanocomposites
11.30-11.20	Th4 2 2 2	7752	Nguven	Huu-Duc T	Evaluation of carbon nanotube and carbon fiber reinforced
11.50 11.50	1117.2.2.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	i guyen		polymer composite for light weight automotive part
11.50-12.10	Th4 2 2 3	6941	Δl-Nasra	Moavvad M	Investigating the use of super absorbent polymer as water
11.50 12.10	1117.2.2.3	0041		mouyyuum	blocker in composite concrete structures
12.10-12.30	Th4 2 2 4	8873	lung	Kyung-Chae	Experimental study on the damping performance of a
12.10-12.30	1117121217	0020	54115	Nyung-Chuc	metal-composite hybrid wheel with a friction layer
12:30-14:00	LUNCH BUF	FET			

	Session-3				
Room-1	Theme-4:	Materials			
	Presentation Code	Paper ID	Surname	Name	Title
14.00 14.20	Th4 2 2 1	7654	Pahalu	Vacra	Effective mechanical properties of 3D textiles including yarn
14:00-14:20	1114.2.3.1	7054	Kdildii	rosra	contact interactions
14:20-14:40	Th4.2.3.2	7523	Rodriguez	Juan F.	The recycling and reinforcement of polystyrene wastes using cellulose
14.40-15.00	Th/ 2 3 3	7120	Andersons	lanis	Evaluation of the apparent interfacial shear strength of flax
14.40-15.00	1117.2.3.3	/125	Andersons	Jams	fibers and polymer matrices
15:00-15:20	Th4.2.3.4	7143	Bespalko	Yulia N.	Thermoresistant oxide nanocomposite: synthesis and characterization
Room-2	Theme-2:	Experimen	tal Methods ar	nd manufacturing te	chniques
	Presentation Code	Paper ID	Surname	Name	Title
14.00 14.20	Th3 3 3 1	7000	Guágan	Págic	Adsorption of self assembled systems made of nonionic
14:00-14:20	102.2.3.1	7802	Guegan	Regis	surfactants onto layered materials
14.20-14.40	Th2 2 2 2	929/	Vomisci	Fatma	Improvement of the flame retardancy of plastized poly(lactic
14.20-14.40	1112.2.3.2	0304	remisci	Fatilia	acid) by means of phosphorus based flame retardant Fillers
14.40-15.00	Th2 2 2 3	7130	laeschke	Dotor	An insight into advanced continuous wave and pulsed laser
14.40-15.00	1112.2.3.3	/150	Jaeschke	reter	cutting of CFRP structures
15.00-15.20	Th2 2 3 4	6976	Voung lu	Kim	Seismic test of composite beam system consisting of H-section
13.00-13.20	1112.2.3.4	0570	Toung Ju	Kim	and U-section members
Room-3	Theme-3:	Materials r	mechanics		
	Presentation Code	Paper ID	Surname	Name	Title
14.00 14.20	Th2 2 2 1	7767	Kitamura	Takanari	Mechanical property and fracture analysis of hybrid composite
14.00-14.20	1113.2.3.1	1201	RILdIIIUId	Iakdiiuii	of recycled paperboard and recycled carbon fiber
14.20-14.40	Th2 2 2 2	7665	Costa		Effect of the erosive wear promoted by dusts on the impact
14.20-14.40	1113.2.3.2	1003	CUSIA	J. J.	strength of composite laminates

14.40-12.00	Th3.2.3.3	7377	Hwu	Chyanbin	Singular integrals in boundary element analysis for
11110 10100	110121010			cityanon	unsymmetric laminated composites
15.00-15.20	Th2 2 2 1	Q/11	Boushid	Anicco	Lower bound approaches for ultimate load prediction of
15.00-15.20	1113.2.3.4	0411	Douabiu	Amssa	composite laminates
Room-4	Theme-4:	Materials			
	Presentation Code	Paper ID	Surname	Name	Title
					The effects of nanosilica on permeability and porosity
14:00-14:20	Th4.2.3.5	6396	Behnaman	Hamed	reduction of cement composites to prevent environmental
					pollutions
14.20 14.40	Th4 2 2 6	0010	Cänon	Sozo Özgo	Fabrication of bioactive glass containing nanocomposite fiber
14.20-14.40	1114.2.3.0	8810	Gonen	Seza Ozge	mats for bone tissue engineering applications
14.40 15.00	Th4 3 3 7	7107	Berber	Hala	Electrical, thermal and morphological properties of low density
14.40-15:00	1114.2.3.7	/19/	Yamak	Hale	polyethylene/zinc oxide nanocomposite films
15:00-15:20	Th4.2.3.8	8861	Akkaya	İpek	Polymer/glass nanocomposite fiber as an insulating material
Room-5	General Session				
					Detection of nonlinear effects and damages during wind
14.00 14.20	ThE 3.2.1	7177	Siarra Dáraz	اسانمه	turbine blades certification tests by means of strain field
14.00-14.20	1115.2.5.1	/1/2	Siella-Pelez	Julian	pattern recognition. Comparative study: Fiber Bragg gratings
					vs Distributed sensing vs electrical extensometers.
14.20 14.40		7115	llycol	Alpor	Effects of process parameters on drilling performance of
14.20-14.40	1115.2.3.2	/115	Uysai	Арег	electrically conductive polymer composite
14.40 15.00	Thr 2 2 2	7400	Callaga	Doul	In situ polymerization of polyolefin (nano)composites using
14.40-15:00	1113.2.3.3	/470	Gallego	naul	sepiolite as support of metallocene co-catalyst
15:20-15:40	COFFEE BRE	AK			

	Session-4				
Room-1	Theme-1:	Structural	Designs, Analy	sis & Applications	
	Presentation Code	Paper ID	Surname	Name	Title
15.40 16.00	Th1 3 / 1	6976	Shahraiahian	Hamzah	The influence of machining parameters on thrust force in
15:40-10:00	1111.2.4.1	0070	Shannajabian	Hamzen	drilling of epoxy/ tio2 nanocomposites.
16.00-16.20	Th1 2 / 2	7277	Galvanetto	ligo	Enhanced 2D lamina formulation for composite materials,
10.00-10.20	1111.2.4.2	1312	Galvanetto	Ogo	simulation with a peridynamics approach
16.20-16.40	Th1 2 4 3	6944	Hassan	Nahla K	Fatigue life of welded joint repaired with CFRP under cyclic
10.20-10.40	1111.2.7.3	0544	nassan	Nama K.	tensile loading
16.40-17.00	Th1 2 4 4	8389	Matvatva	Tinasho A	Applying composite structure techniques of materials to design
10.40-17.00	1111.2.7.7	0305	watyatya	Tillasile A	3D printed plastic functional parts with enhanced properties
17.00-17.20	Th1 2 4 5	8445	Karczmarzyk	Stanislaw	New 2D local model of vibration of unidirectional multilayered
17.00 17.20	1111.2.4.3	0445	Karezmarzyk	Stamslaw	symmetric sandwich structure hinged at two ages
Room-2	Theme-2:	Experime	ntal Methods a	nd manufacturing t	echniques
	Presentation Code	Paper ID	Surname	Name	Title
15.40-16.00	Th2 2 4 1	9014	Ünsal	Cem	Fabrication of P(AN-co-BuA)/PPy core/shell nanoparticles, their
13.40 10.00	1112.2.7.1	5014	Ulisal	Cem	thin-films and spectroscopic and morphological characterization
					Confining effects on cylindrical concrete members with
16:00-16:20	Th2.2.4.2	8566	Chang	Ta-Peng	reactive powder concrete and carbon fiber reinforced plastics
					as retrofitting materials
16:20-16:40	Th2.2.4.3	8764	Moravvei	Mohammad M.	The effects of different levels of expansive cement on the bond
10120 10140	1112121410	0/04	woravvej		strength in concrete-filled FRP tubes
					Optimization by central composite design of a new composite
16:40-17:00	Th2.2.4.4	8191	Gengec	Erhan	absorbent (Beidellite/Polyaniline) production for absorption of
					acid yellow 194

Room-3	Theme-3:	Materials mechanics				
	Presentation Code	Paper ID	Surname	Name	Title	
15.40 16.00 Th	Th2 2 / 1	0105	Challil	Ahmed	Damage growth characteristics in composite glass-epoxy plate	
13.40-10.00	1113.2.4.1	5155	Chenn	Annea	by Vibration analysis	
16.00-16.30	Th2 2 / 2	7117	Ob Sang	Kweon	Evaluation on combustible characteristic for finishing material	
10.00-10.20	1113.2.7.2	/11/	On Sang	RWeon	of exterior wall	
16.20-16.40	Th2 2 / 2	7581	Aydan	Dinar	Elasticity Analysis for Bending of Sandwich Beam with	
10.20-10.40	1113.2.4.3	7501	Demirhan	rinai	Composite Metal Foam Core	
Room-4	Theme-4:	Materials				
	Presentation Code	Paper ID	Surname	Name	Title	
15.40 16.00	Th 4 2 4 4	(720	Faura:	Mahammad	Effects of functionalized multi-walled carbon nanotubes on the	
15:40-10:00	40-16:00 1 n4.2.4.1 6728 Farsi	Farsi	Farsi Wonammad	mechanical properties of HDPE/wood flour nanocomposites		
16.00 16.20	Th4 2 4 2	0400	Allower	s Xavier	Towards UV-composites using dual cure photoinitiating	
10.00-10.20	1114.2.4.2	0402	Allollas		systems?	
16.20-16.40	Th/ 7 / 2	7624	Karan	Do Clorck	Interlaminar toughening of fibre reinforced epoxy laminates	
10.20-10.40	1114.2.4.5	7024	Karen	De Cierck	by polycaprolactone electrospun nanofibres	
Room-5	Theme-4:	Materials				
	Presentation Code	Paper ID	Surname	Name	Title	
15.40 16.00		7005	Chai	I have be	Magnetic carbonyl iron/natural rubber composite elastomer	
15:40-10:00	1114.2.4.0	/325	Choi	Hyoung Jin	and its magnetorheology	
16.00 16.20	Tha 3 a 7	0114	11	V 11	Characterization of the damage propagation under cyclic	
10:00-10:20	1114.2.4.7	9114	nun	т п.	loading for GFRP composites used in wind turbine blade	
16.20 16.40	Th4 3 4 9	9643	Ibrohim	Nor Azowa	Development of graphene based poly(lactic acid)	
10.20-10.40	1114.2.4.0	0043	INI dI III (11	INUL AZUWA	nanocomposites	
16:40-17:00	Th4.2.4.9	9069	Furdui	loan	Flexure strengthening of glulam beams using carbon fiber fabric	

15 April 2015						
09:00-09:30	Opening/Registratio	n				
	Session-1					
Room-1	Theme-1:	Structura	l Designs, Ana	alysis & Applications		
	Presentation Code	Paper ID	Surname	Name	Title	
00.20 00.50	Th4 0 4 4	9693	Caula	Mahammad Dasa	Layerwise approach to analysis of a functionally graded	
15 April 2015 39:00-09:30 Opening/Registration Session-1 Room-1 Theme-1: Structural Designs, Analysis & Applications Presentation Code Paper ID Surname Name Title D9:30-09:50 Th1.3.1.1 8602 Saviz Mohammed Read Layerwise approach to analysis of a functionally graded cylindrical shell vibration and dynamic behaviour 99:50-10:10 Th1.3.1.2 8817 Calado Elçin Selection of composite materials considering costs in the ear phases of the design process 10:10-10:30 Th1.3.1.3 7524 Viale Roger Predictions of the strength of bonded connections in space of mechanical domain 10:30-10:50 Th1.3.1.4 7052 Akgöz Bekir The effect of geometric and material parameters on the stat behavior of laminated plates 800m-2 Theme-2: Experimental Methods and manufacturing techniques Hybrid use of carbon and halloysite nanotubes for toughenii of epoxy composites 09:30-09:50 Th2.3.1.1 8922 Kahraman Ridwan Title 109:30-09:50 Th2.3.1.2 8835 Pi June-Woo Composites single-lap joint repair according to various param 09:50-10:10	cylindrical shell vibration and dynamic behaviour					
00.50 10.10	Th1 2 1 2	0017	Calado	Elcin	Selection of composite materials considering costs in the early	
)9:50-10:10 Th L0:10-10:30 Th	1111.3.1.2	001/		Elçin	phases of the design process	
10:10-10:30 T	Th1 2 1 2	7524	Viale	Roger	Predictions of the strength of bonded connections in space opto-	
	1111.3.1.3	/ 324			mechanical domain	
10.30-10.20	Th1 3 1 /	7052	Akaöz	Bokir	The effect of geometric and material parameters on the static	
10.30-10.30	111.3.1.4	7052	ANGUZ	Deki	behavior of laminated plates	
Room-2	Theme-2:	Experime	ntal Methods	and manufacturing	techniques	
	Presentation Code	Paper ID	Surname	Name	Title	
00.20 00.50	Th2 2 1 1	0077	Kabraman	Pidvan	Hybrid use of carbon and halloysite nanotubes for toughening	
09:30-09:50	112.3.1.1	8922	Kanraman	Ridvan	of epoxy composites	Ily graded our costs in the early tions in space opto- ters on the static es for toughening ovarious parameters hinate ribs
09:50-10:10	Th2.3.1.2	8835	Pi	June-Woo	Composite single-lap joint repair according to various parameters	
10:10-10:30	Th2.3.1.3	6957	Aminanda	Yulfian	Spring-back prediction of CRFP composite laminate ribs	
10.30-10.20	Th2 3 1 /	0221	Tontas	Frsin	Damage detection of the carbon fibers in filament winding	
10.30-10.30	1112.3.1.4	3331	Toptas		process by electrical resistance measurements	

Room-3	Theme-3:	Materials mechanics				
	Presentation Code	Paper ID	Surname	Name	Title	
00.20 00.50	Th2 2 1 1	9 / 1C	Karasov	Tanor	Dynamic buckling of empty closed cylindrical nano-tube viruses	
09:30-09:50	1115.5.1.1	0410	Karasuy	Tallel	under time depended external pressure	
09.50-10.10	Th2 2 1 2	9671	Gallimard		Coupling reduced order and layerwise models for the analysis of	
09.30-10.10	1113.3.1.2	8021	Gammaru	L. C.	laminated composite plates with variable stacking sequences	
10.10-10.30	Th2 2 1 2	7192	Waal	Ibrahim	Behavior of R.C beams strengthened by bonded CFRP with lap	
10.10-10.30	113.3.1.3	1152	waei	Israilin	splices	
10.20-10.50	Th2 2 1 /	9770	Kim	сц	Static and fatigue strength of repaired composite single-lap	
10.50-10.50 1115.5.	1115.5.1.4	8779	NIIII	С.п.	joints	
Room-4	Theme-4:	Materials				
	Presentation Code	Paper ID	Surname	Name	Title	
00.30-00.20	Th4.3.1.1	7147	Chodak	Ι.	Structure of reinforcing filler network determined by electrical	
09.30-09.30					conductivity of the polymer / carbon black composite	
					Mechanical properties of disperse hydroxyapatite nanoparticles	
09:50-10:10	Th4.3.1.2	7186	Abed	AbdulRahman	and carbon nanotube in hybrid bone cement composites for	
					orthopedic applications	
					Injection molding of carbon nanotube and carbon fiber	
10:10-10:30	Th4.3.1.3	7190	Nguyen	Huu-Duc T.	reinforced hierarchical polymer composite for light weight	
					automotive part	
					Investigation of controlled alignment effect on the mechanical	
10:30-10:50	Th4.3.1.4	8841	Kavrar	Deniz	properties of polymernanocomposites with dynamic mechanical	
					analysis	
10:50-11:10	COFFEE BREA	ĸ				

	Session-2				
Room-1	Theme-1:	Structura	l Designs, Ana	alysis & Applications	
	Presentation Code	Paper ID	Surname	Name	Title
11:10-11:30	Th1.3.2.1	7347	Eksiler	Kubra	Development of the biodegradable joining tool for grafting plant
11:30-11:50	Th1.3.2.2	7209	Rubio- López	Ángel	Study of induced damage during drilling on natural fibre based biocomposites
11:50-12:10	Th1.3.2.3	9300	Martins	David	Clickhouse project – an all-composite emergency housing system
12:10-12:30	Th1.3.2.4		Turkmen	Halit	Analytical develoment of a composite drive shaft for heavy duty commercial vehicles
Room-2	Theme-2:	Experime	ntal Methods	and manufacturing	techniques
	Presentation Code	Paper ID	Surname	Name	Title
11:10-11:30	Th2.3.2.1	6977	Young Ju	Kim	Applications of base isolation systems for building structures in Korea
11:30-11:50	Th2.3.2.2	7145	Neogi	Swati	Effect of nanoparticles on the diffusion of sea-water in USP-glass composites
11:50-12:10	Th2.3.2.3	7146	Iskhakova	Liudmila D.	Microstructural characterization of the eutectic composites in multiferroic Ln1–xLn" xMnO3 and M-type ferrites MCoxTixFe12-2xO19 crystals
12:10-12:30	Th2.3.2.4	8372	Goo	Byeong-Choon	Development and characterization of C/C-SiC-Cu brake disc
Room-3	Theme-3:	Materials	mechanics		
	Presentation Code	Paper ID	Surname	Name	Title
11:10-11:30	Th3.3.2.1	9073	Diaconu	Dan	RC beams flexural strengthening using carbon composite materials with different anchoring methods
11:30-11:50	Th3.3.2.2	9010	Wu	КС.	Moment distributions around elliptic holes in anisotropic plates subjected to remote uniform bending or twisting moments
11:50-12:10	Th3.3.2.3	7195	Chen	Ү.Н.	Comparison of time-dependent relaxation/creep in monolithic amorphous ZrCu/nanocrystalline Zr and ZrCu/Zr multilayer composite

					The effect of polymer filling on dynamic response of metallic
12:10-12:30	Th3.3.2.4	8262	Zhang	Pan	corrugated core sandwich panels under air blast loading –
					experimental study
Room-4	Theme-4:	Materials			
	Presentation Code	Paper ID	Surname	Name	Title
11.10 11.20	Th4 2 2 1	0070	Pong Nom		Surface defect detection of the adhesive joint by measuring the
11:10-11:50	1114.5.2.1	0070	DOIIg-INdiii	Lee	normal and lateral impedances of adhesive joints with the carbon nanotubes
11.20 11.50	Th4 2 2 2	7724	Pao		Smart structural actuator using silicone-organically modified
11.50-11.50	1114.5.2.2	1234	Dae	J-Hull	montmorillonite reinforced electroactive polymer composites
11.50 12.10	Th4 2 2 2	6060	.:	T	Ultrahigh strength and tough Fe-based bulk metallic glass
11:50-12:10 1114.3.2.3	0900	LI	Isung Hsiung	composites fabricated by tilt casting	
12.10 12.20	Th 4 2 2 4	74.25	Dádua		Influence of sugar cane bagasse ash (SCBA) on the mechanical
12:10-12:30	1n4.3.2.4	/135	Padua	Paula G. L. de	properties of cementitious composites
12:30-14:00	LUNCH BUFF	T			
	Session-3				
Room-1	Theme-1:	Structural	Designs, Anal	ysis & Applications	
	Presentation Code	Paper ID	Surname	Name	Title
14.00 14.20	Th1 2 2 1	7451	Decud	Mohammad	Investigating the transitional state between circular plates and
14:00-14:20	1111.5.5.1	7451	Daouu	Monammau	shallow spherical shells
14.20 14.40	Th1 2 2 2	7669	Poic	Daulo N R	Effect of the core"s discontinuity on the impact strength of
14.20-14.40	1111.5.5.2	7008	Neis	Faulo N.D.	composite sandwiches
14.40-15.00	Th1 2 2 2	8740	7	Loi	Structural analysis of fiber-steered, variable-stiffness laminates
14.40-13.00	1111.3.3.3	0/40	24	Lei	based on various reference paths
15:00-15:20	Th1.3.3.4	8880	Cakmak D.	Umut	Composite structure of a solar electric vehicle

Room-2	Theme-2:	Experime	Experimental Methods and manufacturing techniques				
	Presentation Code	Paper ID	Surname	Name	Title		
14.00-14.20	Th2 2 2 1	9976	Ün	ilkav	The effect of calcite (CaCO3) filler on e-glass woven fabric		
14.00-14.20	1112.3.3.1	0070		пкау	reinforced epoxy composites		
					Properties of polylactic acid (PLA)/ recycled low density		
14:20-14:40	Th2.3.3.2	7065	Syahmie M.	Mohamad Rasidi	polyethylene (rLDPE) filled Nypa Fruticans (NF) fiber: Effect of		
					fiber modification using chelator		
14.40 15.00	Th2 2 2 2	7114	Thakur	Shaila	Microwave absorption and thermal conductivity enhancement		
14.40-15.00	1112.3.3.3	/114	Inakur		of Epoxy-TiO2 nanocomposites		
					Multiscale fiber reinforced composites with a carbon		
15:00-15:20	Th2.3.3.4	8872	Gürkan	İdris	nanotube/epoxy nano-phased polymer matrix attached:		
					Synthesis and interlaminar shear strength propertiy investigation		
Room-3	Theme-3:	Materials	mechanics				
	Presentation Code	Paper ID	Surname	Name	Title		
14.00 14.20	Th2 2 2 1	7006	Dooud	Mohammad	Application of optimizing genetic algorithm to prestressed		
14:00-14:20	1115.5.5.1	7008	Daoud	wonannau	concrete beams		
14.20 14.40	Th2 2 2 2	7154	Shahadi Acl	Mahdi	Fracture toughness improvement in ZrB2-SiC-based composites		
14.20-14.40	1115.5.5.2	/154	Shahedi ASI	ivienal	at moderate hot pressing conditions reinforced with different additives		
14.40 15.00	Th2 2 2 2	7405	Nikhamkin	Mikhalis Sh	Carbon-fiber and glass-fiber test pieces heating during tensile		
14.40-13.00	כיכיכינוו	/403		iviiknalis Sn.	fatigue tests using resonant test machine		

Room-4	Theme-4:	Materials					
	Presentation Code	Paper ID	Surname	Name	Title		
14.00-14.20	Th/ 3 3 1	6009	Homoda	O M	Piezomagnetic - Piezoelectric composite prepared by high energy		
14.00-14.20	1114.3.3.1	0909	nemeua	0.141.	ball milling for magnetoelectric applicationns.		
14.20-14.40	Th4 3 3 2	8301	Stoblík	Michal	Action of the environment on the durability of fibre composites		
14.20-14.40	1117.3.3.2	8501	JULIA	WICHAI	with cement matrix		
14:40-15:00	Th4.3.3.3	9085	Hamdan	Н.	Pioneer timber species for cross laminated timber in Malaysia		
					Effect of anhydride curing agents, imidazole of accelerants, and		
15:00-15:20	Th4.3.3.4	7184	Chiang	Tzu Hsuan	silver particle size on the electrical resistivity and thermal		
					conductivity of silver adhesives		
15:20-15:40	COFFEE BREAK						
	Session-4						
Room-1	Theme-1:	Structural	Designs, Ana	lysis & Applications			
	Presentation Code	Paper ID	Surname	Name	Title		
15.40 16.00	Th1 2 4 1	6006	Mara	V	Experimental investigation of bolted and hybrid connections for		
15.40-10.00	1111.3.4.1	0990	IVIAIA	v.	FRP structural members		
16.00 16.20	Th1 2 4 2	9776	Karakas	A Sortac	The preserving and improvement of historical structures based		
10.00-10.20	1111.3.4.2	0270	Karakas	A. Sertac	on qualified a RC structure: A case study		
16.20 16.40	Th1 2 / 2	7000	Malhausi	D	The shear behavior's characterization of limestone material by		
16:20-16:40	Th1.3.4.3	7009	Melbouci	В.	The shear behavior's characterization of limestone material by analysis of the fractal dimension		
16:20-16:40	Th1.3.4.3	7009	Melbouci	B.	The shear behavior's characterization of limestone material by analysis of the fractal dimension An alternative strategy for offshore flexible pipes Finite Element		

Room-2	Theme-2:	Experimental Methods and manufacturing techniques					
	Presentation Code	Paper ID	Surname	Name	Title		
15.40-16.00	Th2 2 / 1	71/1	Soung Cho	Vang	Fire resistance performance evaluation of Curtain-Wall Systems		
15.40-10.00	1112.3.4.1	/141	Seung Cho	rang	Applying Light-Weight Inorganic Panels		
16.00-16.20	Th2 3 / 2	7783	Salasinska	Kamila	The mechanical properties and fire stability of natural fiber		
10.00-10.20	1112.3.4.2	/205	Jalasiliska	Kanna	composites from PE-HD foil and walnut shell		
16.20-16.40	Th2 3 / 3	7221	Hwang	Hui Yun	Novel manufacturing the micro- and nano- hierarchical		
10.20-10.40	-10:40 INZ.3.4.5 73	/331	Inwang		structures like Gecko''s feet for the adhesion system		
16:40-17:00	Th2.3.4.4	9070	Furdui	loan	Flexure strengthening of glulam beams using carbon fiber sheet		
17:00-17:20 Th2.3.4	Th2 3 4 5	8/17	Gabr	Mohamed	Preparation and characterization of polypropylene reinforced by		
	1112.3.4.3	0417			electrospun nano-cellulose		
Room-3	Theme-4:	Materials					
	Presentation Code	Paper ID	Surname	Name	Title		
15.40-16.00	Th / 2 / 1	0204	Abutaha	Fuad Y.	Utilization of palm oil clinker (POC) as aggregates for sustainable		
13.40-10.00	1114.3.4.1	5254			lightweight concrete		
16.00-16.20	тьл з л э	7077	Muhtaroglu	Nitol	Evaluation of isogeometric analysis for homogenization of textile		
10.00-10.20	1114.3.4.2	/0//	Wantarogia	WITE	composites		
16.20-16.40	Th/ 3 / 3	8855	Batıbay	Ahmet B	Synthesis of Fe based nanocomposites prepared by mechanical		
10.20-10.40	1114.3.4.3	0000		Anniel D.	attrition		
16.40-17.00	Th4 3 4 4	7235	Tsao		Direct active soldering of Al-graphite composite/Al joints in air		
10:40-17:00	1114.3.4.4	1233	1300	L. U.	using Sn3.5Ag0.5Cu4Ti filler		

Room-4	Theme-4:	Materials				
	Presentation Code	Paper ID	Surname	Name	Title	
15:40-16:00	Th4.3.4.5	7720	Kochk	Sharif	Microwave assisted synthesis of cellulose-supported metal-oxide	
		//50	NESHK	SHEIH	nanoparticles	
16.00 16.20	Th4.3.4.6	9020	Kucukali	Manua	A study on acoustic behavior of the combined structure from	
10:00-10:20			Ozturk	werve	nanofibrous membrane and nonwoven fabric	
16.20 16.40	Th4.3.4.7	9084	Anwar	ИМК	Properties and behaviour of resin-treated plybamboo exposed	
10:20-10:40					to weathering	
16:40-17:00	Th4.3.4.8	7695	Islam	Mohammad	Synthesis and characterization of Zn1-xMnxFe2O4	
				Tariqul	magnetodielectric material antenna for wireless communication	

Poster Presentations

The poster display area will be available for set-up on beginning Monday, April 13.

Poster session will be held on Tuesday, April 14, at 16:00-17:20.

Poster dimensions can be maximum 90 cm in width and 180 cm in height.

POSTER PRESENTATION

Poster Code	Paper ID	Surname	Name	Title
De 1	0025	Dálka	Marrana	The heat release rate of hardened Epidian 5 resin unmodified and modified by fire retardants ZS
PS.1	9025	POIKa	warzena	and ZHS
Ps.2	6966	Hsieh	Ker-Chang	Ti-Cu-Ni-Si Phase diagram in Ti-rich region
Ps.3	7066	Kuo-Chih	Su	Biomechanical analysis of PEEK versus PEKK dental implant
Ps.4	8343	Yi-Chun	Ко	Effect of temperature on the creep characterization of dental composite resins
Ps.5	8879	Kekevi	Burcu	Effect of starch source on the biodegradability of LDPE/Thermoplastic Starch Blends
D. C. 0200	8200	Xiaoguo	Shi	The optical absorption ability of coaxial double-walled TiO2 nanotubes sensitized with FeS2
PS.0	8300			nanoparticles
Do 7	0167	Bouchama	Idris	The role of defects gettering at the inter-grain interfaces of the polycrystalline Cu(In,Ga)Se2 based-
PS./	0107			solar cells
Ps.8	8524	Moreira	JR.V.	Processing and characterization of diamond wire beads
Ps.9	8525	Carvalho	C.S.	A new diamond composite for use in cutting tools for the stone industry
Ps.10	7119	Wang	Wenhai	Bio-inspired interphases for composite toughening
Ps.11	6893	Chiang	С. Н.	Workability of spray-formed Al/Sip metal matrix composites
Ps.12	8462	Zieleniewska	Milena	The rigid polyurethane foams from renewable raw materials for application in cosmetic

				industry
Dc 12	7140		K ing	Development of the evaluation program based on fire resistance performance design of steel
PS.15	/140	Heung-Tour	NIII	structure
Dc 14	8017	Kızıldağ	Nurov	Development of composite polyacrylonitrile filaments for use as multi-functional
PS.14	0742	Kizildag	Nuray	textiles
Dc 15	0202	Machakra	ц	Mechanical properties of polypropylene matrix reinforced with short natural Alfa fibers:
PS.15	7272	WIECHAKIA	п.	extraction fibers & chemical treatment
Ps.16	7326	Pietrzak	Kamila	Composite elastomers with titanium (iv) oxide
Ps.17	8866	Кауа	Ismail	Scrolling CNTs reinforced nanowebs into yarns
Ps.18	8665	Aravi	İpek	Composite nanofiber based proton exchange membranes for fuel cell applications
Dc 10	7424		1	Preparation of epoxy nanocomposite incorporated with silane treated nanosilica for end plateof
PS.1 <i>3</i> 7434	Lee	Jaeyoung	PEMFC	
Dc 20	7444	Song	Minho	Effect of organifier elimination on mechanical properties of an epoxy/organoclay
F3.20	/444	Solig		nanocomposite prepared by using an electromagnetic field dispersion method
Dc 21	8883	Vu	Yeontae	Effects of gas diffusion layers on performance of Pt/C composite catalyst electrode prepared by
F 3.21	8883	Tu		electrophoresis deposition for PEMFC application
Dc 77	7324	Zacharonoulou		Evaluation of nano-modified cementious sensors for corrosion monitoring in reinforced
F 3.22	/ 324	Zacharopoulou	Aggeliki	concrete
Dc 22		Zafairanaulau	Theodosia	Electrochemical evaluation of corrosion in nano-modified cement mortar specimens/
F3.23		Zalenopoulou	meouosia	engineered cementious composite (ECC)
Ps.24	8869	Sunay	Selin	Film formation from PS/Al203 nanocomposites: A fluorescence study
Ps.25	9120	Hanene	Bensouyad	Calorimetric studies of the crystallization growth process in Al-Mg alloys
Ps. 26		Sebaey	Tamer A.	Crashworthiness of laminated composite structures under quasi-static loading
Dc 27	8563	Kisolovo	Tatiana Vu	FeGaIn nanocomposite particles formation via mechanochemical interaction of Fe with
F3.2/	0302	Kiseleva		Ga-In eutectics

BOOK OF ABSTRACTS